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SYMMETRIC DUAL QUADRATIC PROGRAMS 

0 

I.  Introduction 

The duality theory of quadratic programming has heen studied hy Dennis [1 ] 

and principally hy Dorn [2,5,4]. In [ 7 ] , Wolfe treated the restriction of his 

results In nonlinear duality to the case of quadratic programming. 

In this paper, two quadratic programs are presented which are dual, naturally 

symmetric, and related to a iielf-dual quadratic program.  It is a consequence of 

the duality of these programs that, if either has an optimal solution, then they 

share an optimal solution in common.  Since duality, symmetry, and self-duality 

have each heen studied by Dorn, some attention is given to the relation between 

the present work and his. 

Consider the quadratic programs: 

PRIMAL PROBLEM 

(la)  Minimize F(x,y) = ^ x'Cx + -g y'C y + p'x 

(lb)  subject to Ax +          C y ^ -b 

(1c)  and x ^0 

DUAL PROBLEM 

(y unrestricted) ; 

(2a)  Maximize  G(u,v) = -|- u'Cu - -g v'C v b'v 

(2b)       subject to 

(2c)       and 

COMBINED SELF-DUAL PROBLEM 

Cu A'V ;> -p 

v ^ o (u unrestricted) ; 

'Ja)  Minimize  H(x,y) =  y'C y + x'Cx  + p'x +b'y 

(5b)  subject to 

(3c) 

(5d) 

(Je)  and 

C y +   Ax;  ^ -b  , 

-A'y +   Cx  ^ -p  , 

x ;> o . 



Notation and Terminology 

The entries of all matrices and vectors are real numbers.  The matrices 

A , C ,  and C  are mxn, nxn, and m x ra , respectively.  The latter 

two are assumed to be symmetric with positive seml-deflnlte quadratic forms. 

The symbols x , u ,  or p and y , v ,  or b denote n- and m-component 

column vectors, respectively. The components of x , y , u , and v are 

■it- 

variables, whereas those of A , C , C , p , and b are constants. The 

transpose of a matrix or a vector is denoted by a prime.  An Inequality between 

vectors means that the stated inequality holds between each of the correspond- 

ing components.  The symbol <t> denotes the empty set. 

Problem (l) is called the primal problem, and (2) is called the dual 

problem.  A pair  (x,y)  of vectors is called feasible for (l) if it satisfies 

(lb) and (1c).  Similarly, a pair (u,v)  is feasible for (2) if it satisfies 

(2b) and (2c).  The set of all feasible pairs of vectors for the primal 

problem (l) is called its constraint set, 'p  .  The constraint set of the 

dual (2) Is denoted \>y    i$   .     If the constraint set of a problem Is empty 

(i.e., Z-1    =4> or oO   =<t>) the problem is said to be infeasible. A problem 

is solvable if its constraint set contains a pair for which the objective 

function (F in (l) or G in (2)) attains the desired extremum; such a pair 

is an optimal solution of the problem. The sets f    ^ /^   and $   C ^ 

denote the optimal solutions of (l) and (2), respectively. 

It will be shown that a relation of duality holds between (l) and (2) 

in the sense (see [ T]) that: 

(1)  sup G(u,v) ^ inf F(x,y) ; 

(ii) the solvability of one problem implies that of the other, and th% 

extremal values of F and G are equal; 

(ill) if one problem Is feasible while the other is not, then on its 

constraint set, the objective function of the feasible problem 

is unbounded in the direction of extremlzation. 
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It is, of course, possible for both the primal and the dual problems to be 

infeasible (i.e., /*> *./?«. 4> )• 

* r When C  is the zero matrix, the dual problems of Dorn [2] result. When 

-* 
both C and C  are zero matrices, the familiar von Neumann symmetric dual 

linear programs appear. 

Problem (2) can be converted to a minimization problem: 

(^a) Minimize 

(fe) subject to 

(to) and 

-G(u,v) = ^ v'C v + ^ u'Cu + 

(-A')v +    Cu ^  -p 

v        ^   0 (u unrestricted) 

With {k)  as the primal problem, the dual is: 

(5a) 

(5b) 

(5c) 

Maximize 

subject to 

and 

-F(x,y) ■i yc y 

c y 

| x'Cx - 

(-A')x^ 

P'. 

-b 

0 (y unrestricted) 

But (5) is obviously equivalent to (l).  Roughly speaking, then, the dual of 

the dual is the primal.  It is precisely this involutory property which Dorn [5] 

calls symmetry. 

II. Duality 

THEOREM 1:  sup G(u,v) ^ inf F(x,y) . 

PROOF:  Using the convention of [7] that 

if /) =  <t> 

if  7° =. 0 

sup  G = - oo 

inf F = + 

it remains to prove the inequality under the assumption that both problems 

are feasible.  Let (x,y) e ^  and (u,v) e ^  .  Since x ^ 0 and v ^ 0 , 
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-Vv - y'C v^x'A'v^p'x +xICu 

Applying the inequalities 

4L 4t <M> 
2y'C v ^ y'C y + v'C v 

2x'C\i   ^ x'Cx    + u'Cu 

which follow from (y ■- v)'C (y - v) ^ 0 and (x - u)'C(x - u) ^. 0 because 

*■ 

C  and C are symmetric and positive semi-definite, 

-h'v - i y'C y - 5 v'C v ^ p'x + f x'Cx + £ u'Cu 

and by transposing, 

G(u,v) = -i u'Cu - i y'C V - b'v ^ i x'Cx + ^ y'C y + p'x = F(x,y) 

This completes the proof of Theorem 1. 

A solvable quadratic program is related to a certain linear program.  By 

means of this correspondence, the duality theorem of linear programming may 

be employed. 

LEMMA:  Let  (x ,y ) be an optimal solution of (l).  Then  (x ,y )  is an 
o o o o 

optimal solution of the linear program: 

(6a)      Minimize    f(x,y) = (x'C)x + (y'C )y + p'x 

(6b)       subject to Ax +    C y ^ -b 

(6c)       and x ^ 0  • 

REMARK: This Lemma is a special case of one where the objective function F 

in (la) is replaced by a differentlable convex function and the linear ob- 

jective form in (6a) is replaced by the gradient of the new objective function 

(transposed) times the variables.  The proofs of the two Lemmas are completely 

analogous; that for the quadratic function F will be given here- 
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PROOF:  (l) and (6) have the same constraint set,  7° .  Suppose these exists 

(x,y) e P    such that f(x,y) - f(x ,y ) < 0 .  This means 

(T) (x^C + p')(x - xo) + (y;c*)(y - yo) < 0  . 

Let 0 < Ä < 1 , and define 

#     
x = (1 - ^)x + Toe = x + ?v(x - X )  , 

o        o o 

^     
y   =  (1 - >v)yo + >y = y0 + >v(y - yo) 

Since     r    is  convex,     (x  ,y  ) e   ^ .     Consider 

(8) F(x*,y*)  - F(xo,yo) =  X[(x^C  + p')ü - xo)  + (y;C*)(y - yo)] 

+ A2 [(x  -  xo)'C(x  -  xo)   +  (y  -  yo)'C*(y  -  yo)]      . 

From (7) it follows that the right-hand side of (8) can he made negative for 

sufficiently small, positive >v .  This contradicts the assumption that 

(x ,y ) is an optimal solution of (l).  Therefore, (x ,y ) must he optimal 

for (6). 

THEOREM 2:  If  (x ,y )  is an optimal solution of (l), there exists an 

optimal solution of (2). Furthermore, the extremal values of F and G 

are equal. 

PROOF: By Theorem 1, if there exists  (u,v) e j9     such that G(u,v) = F(x ,y ) , 

then (u,v) e «^ . By the Lemma,  (x ,y )  is optimal for (b).  The duality 

theorem of linear programming (cf. e.g., [b]) states that there exists a 

vector v  such that o 

Cx - A'v > -p 
o     o «^ 

v > 0 
o <c- 

v'C = y'C* 
o      o 



and 

. . * 
(9) -b'v = x'Cx + y'C y + p'x 

Notice that (x ,v ) e ^ .  Also, by the symmetry of C , 

*- -N- -g- -N- 
v'C v = v'C y = y'C v = y'C y o  o   o  o  "'o  o  Jo  o 

Thus, from (9) 

F(x ,y ) = -i x'Cx + i y'C y + p'x v O  O      ^00   ^  o   o      o 

- -i x'Cx - h y'C*y -b'v 
^oo   ^ " o       o o 

= -4 x^x - i v'C^v - b'v 
"00*00     o 

G(x ,v )   , v o' o 

and the proof is complete. 

The demonstration of Theorem 2 provides the important 

COROLLARY 1:  If (x ,y ) e /* , there exists a vector v  such that s o' o     o ' o 

(x ,v ) g / , and G(x ,v ) = F(x ,y ) . 
o o     o 00      00 

This Corollary and the symmetry established above yield 

COROLLARY 2:  If  (u ,v ) e ^ , there exists a vector x  such that 
^ o' o'   ^o  ' o 

(x ,v ) G /5   an(i F(x v ) = G(|L,V ) . 
00      o ' 00     V^l' o 

COROLLARY 5:  Nonnegativity restrictions may be extended to the variables 

y or u without affecting the question of solvability of (l) or (2). 

THEOREM 3:  If (l) is feasible and (2) is infeasible, then   inf  F(x,y) = -00 
(x,y)€/° 

PROOF:  Let (x,y) e   /" .  The assumption that ^ = (t> means that there 

exist no vectors u and v satisfying 
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It follows (cf. [6], p. 1*6) that there exist vectors x ^> 0 and y ^ 0 

such that 

(-P',O)| 
X^ 1= 1 

In particular, 

ly =     Ax      ^    O 

*- 
Cx      =     0 

* 
p'x       =  -1 

       ^      
With A ^ 0 , it follows that  (x + Ax , y) e A .  However, 

F(x + Xx  , y) = -A + F(x,y) 

Clearly,  lim F(x + Xx , y) = -oo . 
A —•• 00 # 

Again the symmetric result holds. 

COROLLARY 1:  If (2) is feasible and (l) is infeasihle, then   sup  G(u,v) = oo. 
(u,v)e(^ 

Theorems 1 and 5 and Corollary 1 have the immediate consequence 

COROLLARY 2:  If either problem (l) or (2) is feasible, its objective function 

is bounded in the direction of extremization if and only if the other problem 

is feasible. 

The duality relation is now fully established. 
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In viev of Theorem 2 and its Corollaries it is not surprising to find that 

if either (l) or (2) is solvable, there exists a common optimal solution for 

(1) and (2). 

THEOREM k  (Joint Solution);  If either problem (l) or problem (2) is solvable, 

there exist vectors x  and v  such that (x ,v ) is optimal for (l) and 

(2).  (in this case,  (x ,v ) is called a Joint solution.) 

PROOF:  It is no restriction to assume that  ^  is nonempty; let (x ,y ) € /* 
o o 

Then there exists a vector v  such that  (x ,v ) e A .  Hence, o s  o    o o ' 

(10) Ax    + C  y 
o                0 ^ -b > x    > 0 

o c- 

Ox     - A'v 
o              o 1 -P ! v    > 0 

o *- 

and 

| x'Cx    + i y'C y    + p'x    =   -i x'Cx    - ^ v'C v    - b'v 
oo^^ooo ^oooo o 

The latter implies 

(11) x'Cx    + p'x    =   -h y'C*j    - k v'C*v    - b'v , x ooo^oooo o       ' 

and the  inequalities   (10)   imply 

x'Cx    + p'x    > v'Ax    >  -v'G y     - b'v    >  -i y'C  y     - i v'C  v     - b'v oo      *     o ^    o    o *-       o    Jo o^-^oo o       o o 

By (ll), equality holds throughout and 

v'cV = i y'C*y + i v'C^v oo   "^oo   ^     o       o 

Therefore     (v    - y  )'C   (v    - y  ) = 0  ,   from which    C v    = C y      follows. 
o        o        x  o        o o o 

(See App,   g,   [5].)     Hence     (x  ,v   )  e   /*  ,   and    F(x    v   ) = F(x  ,y   )   ,   so 

(x ,v ) e   z0   . x   o'   o o 
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REMABK (Complementary Slackness):  Let (x ,v ) be a joint solution of (l) 

and (2).  Define 

■x- 
s    =Ax    +Cv    +b       , o o o ' 

t    =  Cx    -  A'v    + p oo o 

Then 

(12) S'v    =  0  .       and      t'x    =  0 v     ' o o ' o o 

This property, can be deduced directly or as a consequence of the 

Kuhn-Tucker conditions. 

In the case of linear programming, the feasibility of both the primal 

and the dual problems implies the existence of optimal solutions for each 

of them. Although this is not generally true in nonlinear programming, it 

is in quadratic programming. 

THEOREM 5:  If both (l) and (2) are feasible, then the infinimum of F over 

'  is attained on 7° and the supremum of G over Ju     is attained on &    . 

(Moreover, (l) and (2) have a joint solution.) 

PROOF:  Because Z0  and ß    are each nonempty,  F  is bounded below on  7^ , 

and G is bounded above on /^ . To the latter, with some variations in the 

proof, may be applied App. i of [5] , to the effect that G must attain its 

supremum (over X? ) on $   .    The remainder of the proof is an application 

of Corollary 2, Theorem 2.  The assertion in parentheses is true by Theorem \. 

III.  Self-Duality 

Consider a (primal) problem of the following kind: 

(ija) Minimize   /(z) = z'Bz + q'z 

(ijb) subject to Bz ^> -q 

(13c) and z ;> 0 
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where B is positive semi-definite, but not necessarily symmetric. If B 

were symmetric, problem (ij) would be a special case of (l). The symmetry 

can, indeed, be brought about with no adverse effects on the problem.  Set 

B = ^ (B + B') 

It is easy to verify that: 

(i) B is symmetric; 

(ii) B is positive semi-definite; 

(iii) x'Bx = x'Bx , for all x . 

Therefore (13) is equivalent to: 

(lUa) Minimize   /(z) =  z'Bz + q'z 

(lift)) subject to        Bz ;> -q 

(lJ+c) and z ^ 0 . 

Dorn [h]  has proved that a problem of the type (ij), in which B is 

further assumed to be positive definite, is always solvable, has Min '/(z) = 0 , 

and is self-dual.  If the hypothesis of positive definiteness is exchanged 

for positive semi-definiteness and feasibility, the same conclusions are valid. 

THEOREM 6:  If (14) is feasible it is solvable and Mln /(z) = 0 . 

PROOF:  For any feasible z , (14b) and (l^c) imply  /(z) ;> 0 ;  since (f> 

is bounded below (Ik)  has an optimal solution.  The dual of (14) is 

(15a) Maximize  ^(u,v) = -u'Bu - q'v 

(15b) subject to     2Bu - B'v ;> -q 

(15c) and v ;> 0  , 

and it is solvable.  Multiplying (15b) by v and subtracting u'Bu from both 

sides of the inequality yield 
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-u'Bu + 2v,Bu  - v'B'v ;>  -u'Bu   - q'v 

from which it follows that 

(16) 0 ^ -   (u  -  v)'B(u-v)   ^  -u'Bu   - q'v =    ^(u,v) 

Now 

0 ^ Min   /(z)  =  Max    ^(u,v) ^ 0 

so that    Min   /(z) = 0  . 

COROLLARY:     If   (ik)   is  infeasihle,   so is   (15). 

PROOF:     In proof  of the Theorem it was  shown that     ip (u,v) <£ 0    whenever     (u,v' 

satisfy"■X$5!!r^'   and (15c).     But    tp      cannot be hounded above  if  (lU)  is 

infeasible. 

This Corollary  shows that  {lk) and (15)  are either both feasible or both 

infeasible.     Hence  it is  sufficient to consider only the  case where  (lU)  and 

(15)  are both feasible — and hence  solvable.     Let      /*      and     <$      denote  the 
*      ' 00 

sets  of  optimal  solutions  of   (lk)  and  (15),   respectively. 

THEOREM 7:     Problem  (l^)   is   self-dual  in the  sense  that 

(i)     z    e    Z5      implies     (z  ,z   ) e   J    , v/       00 ooo' 

(ü)     (u0'
Vo)  e   ^o    imPlles     v0 €    f0- 

PROOF: 

(i)     If     z    €    7"    ,    /(z   )  =  0   .     Now 
00 x   o       ^ 

2Bz     - B'z    =  Bz    S    -q    ,       and       z    >  0 
o o o «^ o *- 

so     (z   ,z   )  e   «^   •     Moreover, o'   o 

TKZ   ,z   )  =   -z'Bz      -q'z    =   - /(z   )  =  0 r    o'   o 00^0 ' v   o ' 
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and therefore  (z ,z ) G «^ . 

(ii) Let  (u ,v ) € "^ •  Inequality (16) and the fact that  ^(u ,v ) = 0 

imply 

Bu = Bv 
o    o 

This and the symmetry of B imply 

u'Bu = v'Bv 
o o   oo 

Now v > Ü , and 
o *- 

Bv = (Bv  + B'v ) - B'v = 2Bv - B'v > -q  . 
oo     o      o     o     o^^- 

Finally, 

/(v ) = v'Bv + q'v = - V/(v ,v ) = 0   , 
'      o ooo    ^^o' o       ' 

so that v e ^  . 
o    o 

The self-dual program (lU) is not entirely artificial, for problem (5) 

stated in Section I is of the form (13).  This can be seen by setting 

z = 

and  ^(z) = H(x,y) = F(x,y) - G(x,y) .  Theorem 7 shows that (3), "by modifi- 

cation to the form (l^), is (equivalent to) a self-dual program. 

The sense of self-duality defined in Theorem f is not thoroughly satis- 

factory.  It is known that by combining the symmetric primal, and dual problems 

of linear programming, it is possible to obtain a formally self-dual problem. 

Indeed, if A is a skew-symmetric matrix, the linear program 
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Moreover 

^UjV) = - «(U,V) ^ 0 

where <&     is the dual objective function, (19a).  Now 

0 ^ Min  (X,y) = Max  (U,V) ^ 0  , 

whence the conclusion. 

A true combination of (l) and (2) is: 

(21a) Minimize  K(x,y,u,v) = ^y'C y +-2-u'Cu +-gv'C v r^x'Cx ^-b'v + p'x 

(21b)  subject to C y + Ax ;> -b   , 

(21c) -A'v + Cu ;> -p   , 

(2id) v        :>   0 , 

(21e)  and x ^ 0 

Under the substitutions. 

0   A 
A = , c 

V-A' 

C* 

ü  c. 

X = , Y 

it is clear that (21) is of the form (18) and is, therefore, self-dual. 

To answer the question of the relation between the. self-dual problems {lh) 

and (l8), note that the former can be written a? 

Minimize    ^(z) = -g z. Bz  +  5- z-'Bz + q'z 

subject to Bz  + (B - B')z ^ -q 

and z ^ ^ 

Now B is symmetric and positive semi-definite,and (B - B')  is skew symmetric. 

Thus let A = (B - B')  and let C = B =  The problem above becomes, then, 
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(17a) Minimize      q'z 

(1Tb) subject to  Az ^ -q 

(17c) and z ^ ü 

is clearly self-dual.  This formal self-duality can be shown in quadratic * 

programming as well.  Consider the problem: 

(18a)     Minimize    *(X,Y)  - ? Y'CY + i X'CX  + q'X 

(18b)     subject to CY +    AX ;> -q 

(l8c.)     and X ;> U 

where A is skew symmetric and C is symmetric and positive semi-definite. 

The dual of (18) is: 

(19a)     Maximize    ^(l^V) = -g V'CV - ^ U'CU - q'V 

(19b)     subject to -A'V +    CU ^ -q 

(19c)     and V ^ 0  • 

Since A is skew symmetric, (19) is just (l8); that is, (l8) is self-dual. 

THEOREM 8:  If (18) is feasible,  Min *(X,Y) = 0 . 

PROOF:  Since Ä is skew-symmetric,  X'AX = 0 for all X .  Let  (X,Y) be 

feasible for (18).  Taking transposes in (10) and multiplying by X , it 

follows that 

Y'cx 2 -q'x 

Therefore, 

(20) *(X,Y) = i Y'CY + ^ X'CX + q'X ^ (Y - X)'C(Y - X) ^ 0 

Since  *  is bounded below for feasible vectors, (18) is solvable — and so is (19), 
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(22a)       Minimize   /(z) = g z'Cz + ^ z'Cz + q'z 

(22b)        subject to Cz +    Az ^ -q 

(22c)       and z ^ 0 

Thus (ll+) and (22) are the same problem.  If z is feasible for (14),  (z,z) 

is feasible for (l8). Furthermore, if z  is optimal for (l4), then (z ,z ) 

is optimal for (lö) because  /(z ) = Ü , the minimum value of * 

On the other hand, if (X ,Y ) is an optimal pair for (l8), then by 

Theorem 8 and Equation (20), 

0 = *(X ,Y ) > (Y - X ),C(Y - X ) > 0 x o' o ^ v o   o    o   o ^- 

Therefore CX = CY  (as seen in similar arguments above,' so that 
o o 

/(X ) = »(X ,X ) = ' v o       o o 0 

This means that X  is feasible and optimal in (22), hence in (14). o 

These remarks show that (Ik)  and (18) are equivalent problems.  The 

proof of this equivalence closely parallels that of Theorem 7.  It may be 

more accurate, therefore, to say that {lh)  is actually equivalent to its dual. 
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